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Surface modes at the nematic-isotropic interface
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We examine surface modes at the nematic-isotropic interface using the generalized dynamical Landau-de
Gennes theory. We assume an isothermal, infinite, unbounded nematic-isotropic system characterized by a
scalar order parameter, both phases having the same density and viscosity, respectively. The generalized
dispersion relation is obtained and analyzed in particular cases. Order parameter relaxation dominates in the
short wavelength limit, while in the long wavelength limit viscous damping becomes important. We study the
crossover between the two regimes and estimate the extent of this region for the liquid crystal 8CB.
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[. INTRODUCTION Ginzburg-Landau(TDGL) equation. The second equation
(for temperaturkis based on a modification of the heat equa-
The diffuse theory of the interface separating two bulktion to allow a source term that accounts for latent heat pro-
phases was developed in the late 19th Century by van detuction at a moving interface. The original derivation of the
Waals [1]. Previously, interfaces had been modeled bytwo equations was justified by requiring the free energy of
Young, Laplace, and Gauss as surfaces. In this formulatiothe system to decrease monotonically in time. Subsequently,
the interface is regarded as a singular surface on which afenrose and Fif¢1l4] and otherd 15,16 applied the argu-
sociated physical mechanisms are localized and representatents of irreversible thermodynamics to the derivation of the
as boundary conditions to be applied at the surfacgl. The  phase-field equations, establishing that they are consistent
use of this so-called “sharp interface” description of phasewith non-negative local entropy production.
boundaries in practical problems requires the solution of a Thermotropic liquid crystal surfaces present a case in
free boundary problem. Free boundary problems are knowwhich the phase-field model can be used particularly fruit-
to be extremely hard mathematically and indeed form a sepdully. On the one hand, in this case the phase-field order
rate class in their own right. parameter is no longer ad hocinvention, but known to be
In contrast, diffuse interface theories recognize that, ina physically measurable quantity. On the other, the very flu-
reality, the interface has a finite thickne@ssually small idity of liquid crystals permits sensible time scales for useful
compared with typical macroscopic length scalieswhich  experiments. The relevant phase field theory of nematic-
physical quantities, such as density or composition, vary beisotropic phase transitiofi20,21] turns out to be just the
tween their values in the adjacent bulk phases. Diffuse interdynamical generalization of the familiar Landau-de Gennes
face models may be based on an extended thermodynamitfseory of liquid crystal interfacg4,22]. The necessary hy-
involving gradients of the thermodynamic variables to ac-drodynamic coupling has been included in the more com-
count for nonlocal effects. Originally such theories were for-plete dynamical Landau-de Gennes theory of H&8$ and
mulated to investigate near-critical fluids. However, theysubsequently by Olmsted and Goldbjd].
have subsequently been refined and developed to account for Apart from its intrinsic interest, the dynamics of liquid
a wide range of physical situations, such as liquid crystalerystal surfaces presents an interesting case study because
[4], superconductivity5], spinodal decompositiof6], and  the naive sharp interface and naive diffuse interface limits
ordering transitions in alloyg7—9]. Rowlinson and Widom lead to very different conclusions concerning the mode struc-
[10] provide a thorough account of their historical develop-ture at the nematic-isotropic interface. The diffuse interface
ment. theory, solved assuming that the order parameter and veloc-
The phase-field models provide an example of a diffusdty fields do not interact, gives rise to a purely diffusive
interface model in which the phase of the system at a parsurface wave whose mode structure is identical to the bulk
ticular point in space and time is defined by the value of adiffusive mode induced by a TDGL theofg21]. On the other
hypothetical order parameter. The phase model of the firstaand, the sharp interface theory yields a modified capillary
order phase transition associated with the solidification of avave, with a large propagating component. In this paper we
pure material was first proposed by Lang#t] and subse- make significant progress in reconciling these points of view.
guently developed by a number of researché&gs-19. In what follows we analyze the the surface eigenmotions
The phase-field formulation replaces the free-boundaryf the nematic-isotropic interface using the Hess-Olmsted-
problem associated with the sharp interface model of an inGoldbart(HOG) model. We consider an equilibrium planar
terface by a coupled pair of nonlinear reaction-diffusionnematic-isotropic interface afy, (nematic-isotropic phase
equations. The spatial and temporal variation of the ordetransition temperatujeas the base state of the system. The
parameter phase field is governed by the time-dependeffitont is then perturbed with a small amplitude monochro-
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matic wave and linear stability theory is used to obtain theln this paper we use this Landau-de Gennes form, but retain-
dispersion relation. The paper is organized as follows. Inng the Frank-Oseen elastic constant so that comparison with
Sec. Il we describe the basic model and give the governingulk nematic quantities may be more easily made.
equations. In Sec. Ill we present an asymptotic analysis of We suppose that the diffusion is sufficiently rapid that the
the equations of motions and the generalized dispersion resystem remains in thermal equilibrium. We therefore ignore
lation. Limiting cases of the dispersion relation are analyzedhe equation for energy conservation and assume an isother-
in Sec IV. Finally in Sec V, we draw some conclusions andmal system at a temperature specified in the formulation of

present some directions for future work. the problem. We suppose the system to be incompressible,
i.e., the velocities of motion considered are much less than
Il. EQUATIONS OF MOTION the sound velocityc, and for the circular frequency and

o o . wave numbek, the inequalityw<<ck is valid. In subsequent
The local state of a uniaxial nematic liquid crystal is de-york we shall relax these approximations, and also include

scribed by a traceless symmetric second rank te@sgr the full symmetry allowed for within the Landau-de Gennes

3 1 formalism.
Qaﬁ=—¢( NaNg— _5(1[3), (1) Using these appr_oximatiqns, the HOG coupled equations
2 3 of motion for the fluid velocity and the order parameter be-
) ) o come[23,24),
where the unit vecton is the usual nematic director, amfl
is now the scalar order parameter. V.5=0 (6)
In this paper, although not in future studies, we shall sup- ’
poseﬁ to be fixed in space and time, and the relevant physics p(0+0-V)0,=0,0,,, (7)

is given by the scalar order parametg(r,t). We note that

this is an idealization which is in general not true during . 1
relaxation, and not even true statically close to an interface. (9i+0-V)Qap=k5Qy5~ Quyklpt Nep+ Y_HZB'
However, in our view, previous studies of related systems ' (8
[21] suggest that the lowest frequency and slowest relaxation

modes do approximately satisfy this condition when the surThe total stress tenser,z is given by

face is homeotropic. Thus our idealized problem—that of the

dynamics of a nonconserved order parameter weakly coupled Tap="Pbapt UZ;# Ui,e+ ‘T(i,e- 9
to a conserved order parameighe density — contains a
good part of the essential physics of the nematic-isotropic oop=2mKo5—NH3p, (10
interface, and is significantly easier to analyze.
~ Within the mesoscopic approach the free energy func- 0ap=H3,Qys—Qu,H3p, (11)
tional is given by
: o 9Q (12
O'a e — .
f(Q,T>=f [F(Q.T)+fr(VQ)]dV, 2 P 804Qy, P
HereH ;= — 6F16Q,; is the molecular fieldy is the vis-
where cosity not coupled to the rotatiory, is the rotational viscos-
_ ok _ ity and \ is a dimensionless coupling constant between ori-
f(QT)=a(T—=T")QupQpa—BQupQs,Qya entational order and flow which turns out to be the ratio of
+C(QaﬁQBa)2 ©) rotational viscosities. The tensor fiekd,;=d,v 4 is the ve-

locity gradient tensor, and the superscrigta, andd, denote
is the bulk Landau-de Gennes-free energy deng§;26,  symmetric-traceless, asymmetric, and distortional portions of
and a tensor, respectively.
Using Egs.(1)—(5) and considering a two-dimensional
1 1 flow with horizontal and vertical velocity componentsand
fr(VQ)= ELl(‘?aQﬁv)ZJ“ ELZ(‘?aQaﬁ)z @ win thex andz directions, respectively, the basic E¢6)—
(8) take the form
is the distortion(or Frank [27] free energy density. The elas-

tic constantd_; andL , are related to the Frank-Oseen elastic dxu+d,w=0, (13
constants by the relationlsl=K3=9¢§(L1+ L,/2)/2 and 1
K,=9¢5L4/2, wheregy, is the bulk nematic order param- p(9+7-VIu=—d,p—KV2dd, b+ nV2U+ =\d,
eter. In the so-called “one-constant approximatiorK( 2

=K,=K3=K) and ¢,=1, the Landau-de Gennes-free en-

24
ergy density becomes X(KVeip—t,), (14

p(0+0-VI)w=—3,p—KV2¢3d,p+ nV2Ww—\4,

1
fF=§K(‘9aQB7)2- ) X (KV2h—1,), (13
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R 1 1 interface. For ease of presentation we discuss two-
(0+v-V)p=—(KV?p—Tf,)+ > M= dutdw), dimensional perturbations to the system, with the under-
" (16) standing that, since the system is isotropixiandy direc-
tions (neglecting the biaxiality of the nematic phaséhe
wheref ,=df/d¢=3a(T—T*)¢p— 3B¢*+9Ce>. The ma- results carry over to the three-dimensional case if the wave
terial propertiesy, A, andy; are assumed to be constant. number is interpreted as the modulus of the two-dimensional
There are two typical lengths in the problem. These are agave vector.
follows.
(i) The microscopic correlation length), associated with . ASYMPTOTICS
order parameter changes. This gives the interface width, or , .
equivalently the dimension of the order parameter profile. e now seek solutions of Eq&l7)—(20) for e<1, which
(i) A macroscopic length related to the capillary number2'® essentlally_ diffusive in the inner region, _but which are
and the Reynolds number. We consider the thin interfacgoverned by viscous hydrodynamic behavior in the outer re-
limit of the problem. The physics involves capillary forces, 9ion- In the inner regiony varies rapidly, whereas in the -
viscous dissipation, and fluid inertia. Assuming that no othefPUter region advective transport of the order parameter domi-
physics enters, the control parameters are the interfacial teRates.
sion «, the viscosityn, and the mass densipy. From these
can be constructed only one lendth= 7?/pa. A. Outer region
For usual nematicd,;~10 ° cm andl,~10 2 cm. The
ratio of these two lengthg=1,/I,~ 10 * constitutes the
small parameter of the theory.
We rewrite Eqs(13)—(16) in dimensionless form by mea-

Since in the outer regio is a constant in each phase

(b= pon=1 for z<0 and = ¢;s,=0 for z>0), v obeys
the equations,

suring length in units of,, and time in units oft*zlfle au+d,w=0, (21)
~10 %s, whereD=75/p~0.1 cnf/s is the viscous diffu-
iolré (;?T:1/sstant. The resulting velocity unit is thep=D/I, p(&t+5-V)u= —o,p+ 7V2u, (22)

We introduce the dimensionless quantitigs=6C /B,
7=24a(T—T*)C/IB? f=24C%/B* p=24C%2p/B*
5: 242C3p/BY, N=6CM\/B, ;: 282C3plt, B4, ;1 Thus, the outer problem is equivalent to the Navier-Stokes
=10, 71/K, 62=16CK/BZI§]=I$,/|§,. Omitting the bar no- equations subject to the incompressibility condition. This

p(d+v-V)w=—d,p+ 7V3w. (23

tation, the governing Eq$13)-(16) can be written as problem _has been muc_h studied in t_he IiteratLQB—_S(].
The solution corresponding to the stationary planar interface
dyu~+ad,w=0, (17)  is given by,up=wy=0 andpy=const. We now impose a

small periodic perturbation to the interface in thdirection
- - , 1 with wave numbelk,
p(ditv-V)u=—9,p— € V-ddydp+ nVu+ E)\&X

X(e2V2p—1,), (18

u=ugtu;=0+U(z)exdi(kx— wt)]
=Ugexg qz+i(kx—ot)], (24

p(d+v-VIW=—,p— €2V2h3,p+ nV2W—\d, W=Wg+ Wy = 0+ W(2)exdi (kx—ot)]

22 4
X (e2V2p—1,), (19 =Woexd qz+i(kx— ot)], (25
- 1 .
y1€4(+v-V)p=(2V2p—T,)+ E)\ylez(— AU+ W), P=po+py=const-P(z)exdi(kx— wt)
(20 =constt Poexd qz+i(kx— wt)]. (26)
wheref ;=27¢— 64>+ 44> The circular frequency is, in general, a complex number

This well-known free energy density describes a first-whose imaginary part defines the time scale ¢ 1/Imw)
order nematic-isotropic phase transition. Fer ry =1, the  for the relaxation of the perturbation with characteristic
two phases, nematiaf,.,=1) and isotropic ¢;s,=0) co-  length scale 2r/k.
exist in equilibrium o= fiso) - Substituting these forms into Eq1)—(23), and linear-

In this paper we shall take the base state of the system ftiging, yields
be a stationary planar nematic-isotropic interface situated at

z=0, such that the nematic lies in the regiprt0 and the 0=dyuy+ d,wy, (27)
isotropic phase lies in the regior>0. The front is then

perturbed with a small amplitude monochromatic wave and poU=—dyp1+ 7V2Uq, (28)
linear stability theory will be used to obtain the dispersion

relation.x is the direction of the wave propagation along the pOW, = — d,p1+ V2w, . (29
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In this case we get a system of algebraic equations for thsubscript7 means that the imaginary part af, describes
amplitudes the viscous damping of the capillary waves. The details of
the conditions are presented in the Appendix.

ikUg+qW,=0,
i B. Inner region
{io+v(g>—k?)IUyg— —Py=0, To look for the solutions in the inner region, we rewrite
p Egs. (17)—(20) in terms of inner variableg=x/e and ¢
q =7le,
{io+v(g°—k?)IWy— —Po=0, (30) - .
p du+dw=0, (37)

wherev= 7/p is the kinematic viscosity. In order to obtain _ ~ o~ .~ o
the characteristic equation connectipg, andw, we put the p(o+u-V)U=—0d,p—V°hd p+ 7Vl
determinant of the systei30) equal to zero and obtain

1 ~
+ NIV —17), 38

(@Kt (@~ K?)]=0, (3D RGN 39
with  solutions gq=*=k and qg==*=| where | S+ T-VIW= —0.0— V2D, b+ nVI—NI(VZD—
kI Tl (2KD). p( ) P bdcp+ 7 (Vg (g)gl)

For a nematic-isotropic systefwhich here is merely a

simple binary liquid of large fluid depths, wavelike solu- 5 ~ o~ o~ 1 5 5
tions of Egs.(27)—(29) in the nematidregionz<0), are of Y1(d+0-V)p=Vp—fy+ E)\Vl(_(9gu+(9gw)y
the form (40)

uy=(ikAe?—ICe?)eltkxon, (32 where the velocity unit is now,/t, , p=24C3%p/B4Z,

~ 2 2
_ 20 i~ alZy i (kx— ot) Y1=15y1 /Kty .
w=(kAd“+ikCe")e ’ (33 Consider first an equilibrium planar nematic-isotropic in-

terface perpendicular to thieaxis. The density and horizon-
tal momentum equation$37) and (38)] are satisfied identi-
cally, and the remaining equations give

Similarly, in the isotropic phasdregion z>0) (using
primed quantitie

up=(ikA’e **+IC’e 19)ellkxen), (34) o~ ~ o~ 0

9¢Po= e odeho— Nde( Iz o~ 7). (412)

wi=(—kA’e k2+ikC'e el (35 _

In Egs.(32)—(35) the velocities are determined by two con-

tributions: (i) the potential flow described by the terms with where the subscript 0 refers to the equilibrium interface and

i ’ i i _ X 0 ~ . . X

?emnﬁgfgéjizpzzﬁxlawzmg ;r,risp‘?,oe”ﬂ(zts(ﬁt‘?w‘t’)‘?'zi‘:)'%epo \IIEVS Tz\ll)e Vs:f;nbig%—flﬁ(qbo). Using Eq.(42) and integrating

rotational flow represented by a vector potential with ampli-

tudesC(k?>—12), C'(k?—1?) describing fluids of finite vis- 1

cosity. Po= P 5(&5(750)2, (43
The dispersion relatiorw(k) is derived by consistency

relations on the quantities which appear in EG®) and  \ herep is the common value of the pressure in the bulk

(35). In the full diffuse interface approach these are providedphases where the gradient of the order parameter tends to
by matching the results in this section with those of an analo-

gous analysis in the “inner region” close to the interface, and?®"°- The order parameter profﬂﬁ%sg) is the solutlorl of Eq.

we carry out this analysis below. In the classical sharp inter{42) with the boundary conditiongo(—)=1 and ¢o()

face approach, however, the inner region shrinks to zere=0. Integrating Eq(42) once, and imposing the boundary
thickness. Now, as is well known, these consistency relationsonditions, gives &§¢0)2=2f(¢0). This result can be used
are determined by the boundary conditions at the sharpo obtain the energy per unit area of the interface, that is the
boundaryz=0 on the nematic-isotropic interface, where theinterfacial tension, as

stress tensor and velocity must be continuf®l. The dis-

persion relation can be written as o f‘”

~ 1 . ©
f( o) + E(&§¢0)2}d§= f_ (9gcho)*dE.
I—k
w%=l—wg , (36 (44)
There is a one-parametric class of functions satisfying Eq.
wherewézak?’/Zp is the capillary wave dispersion relation (42), with vanishing derivatives in every order at infinity,
for ideal fluids[31], and « is the interfacial tension. The namely,
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§—¢&o NG k2
¢0(§) 1- tanhT (45) (%:—li:—lz, (51

The freedom of choosing, anywhere represents the fact where the subscrip$ means that the imaginary part of,
that the position of the interface is arbitrary. We fix the centerdescribes the relaxation rate of the order parameter.
of the interface(defined by $,=1/2) to be até=0. This To find the general dispersion relation, we first eliminate
extra condition gives. U andP from (47)—(50), obtaining

We may perturb this base state as follows:

~ [ipw
U=0+0(Hexike—wt)], (ipw—k?) W= (k——Zn d2W+k diW—H®d o
w=0+W(&exdi(ki—wt)], _;)\dg(H;ﬁ)’ 52
P=Po(&)+P(&exii(k{—wt)], f e o
HO—iy,0®=N\yd;W—y,Wd,y. (53

$=dol&)+ (Oexdi(ki—wb)], (46) Using Hd,¢o=k?d¢, and the fact that the linear opera-

wherek = ek. Substituting Eqs(46) into Eqs.(37)—(40) and tor_H is self-adjoint, iniegrating_ Eq52) over all g,_ n?ultij
linearizing in perturbations, give plying Eq. (53) by d:¢o and integrate, and eliminating
JZ..@d:odé, the following result is obtained:
0=ikU+dW, (47) )
) (ipw—7k?) (710K J Wd¢
—ipwl=—ikP—ik®dpo+ n(dZ-k*U - EiE)\HE),

(48) =k J W(d o) (2)dé. (54)
—iEw\TV:—ng—dé&odgé—(dé—iz)&)dgﬁo Considering the relations between “inner” and “outer”
o ~ iti iff ling the Eq.(54 it-
N n(dg—kz)w+xd§H¢, (49) ?eunaggtles(due to different scaling the Eq.(54) can be writ
~ o~ ~ 1 e~~~ >
—iy0®P=—-H®+ Ehyl(dgw—ikU)—thfqﬁo, 2(ipw—nkz)(iylw—kz)J%Wdz
(50)
= — k2,2 W(0")+W(07)], (55)

whereH = —dZ+k?+ f%;b can be conveniently thought of as
a quantum mechanical Hamiltonian operdi88].

We now note that if we ignore the interaction between - 1
velocity and order parameter fluctuations, the physics is lim W(§)=lim W(Z):;W(Ot), (56)
completely given by the the eigenvalue equation Exf). foe 220
This is the TDGL limit in which the inner region dictates the Using Egs.(33) and (35), the integral in Eq.(55) can be
physms entirely. Eq(50) becomesHCD—lyleD Note that  evaluated to give
f&@ is positive at¢==+o% (where ¢o=0 and ¢,=1) and B K
negative atz=0 (where ¢o,=1/2). For our casef(¢) f Wdz:A—A’+i|—(C+C’). (57)
= $2(1-$)?, one hasff=2-12po(£) + 1243(¢), which o
equals—1 até=0, and tends to+ 2 for é&— +. It follows  Considering the continuity of horizontal velocity at the inter-

thatf(%@ represents a potential well which must have at leastaceU(0)=U’(0), weobtain the generalized dispersion re-
lation

where we have used the matching condition

one bound state. In fact, sinke=0 corresponds to a uniform
translation of the interface, we know thaf;_,=0 is the ik2 | —k

eigenvalue with the eigenfunctiosh., [this can be easily w?+ P Wi T (58)
checked by differentiating Eq42) with respect tof]. Also, !
since this function has no node, it must be the ground statevhich can be written in a more compact form as

Since thek dependence dff is simply the additive constant
k2, it follows thatd,é, is the ground state eigenfunction—
the so-called “slow mode”—for alk with eigenvalug33], where we have used Eq86) and(51).

wz—w¢w=w3], (59
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FIG. 1. The “phase” diagram (log(1/t),log,ck). The general FIG. 2. The difference between numericalm(w) (continuous

dispersion relation Eq(58) (continuous curvg the Navier-Stokes curve in Fig. 3 and corresponding asymptotic valuesashed curve
dispersion relation Eq36) (dashed curve and the order parameter in Fig. 1 for k<k. and dotted curve in Fig. 1 fok>k;) as a
relaxation dispersion relation E¢51) (dotted curve function of log k.

. o 2
IV. ANALYSIS OF THE DISPERSION RELATION A. Weak damping approximation (|wol=vk?)

In this limit ,, differs from v, only by a small quantity
¥,- Thus in this regime it can be approximated dy= wq
—ivy,, by analogy with a damped oscillator. Using this ap-
oximation forl and w, we now obtain

From the asymptotic analysis presented in Sec. Ill, it fol-
lows that in the short wavelength limik{- ) the interface
must necessarily be regarded as diffuse. In this case, t
relaxation of the order parameter is the important process,
and this is governed primarily by processes in the inner re- vawg| 2
gion in our asymptotic analysis. However, in the large wave- 7n=(1—i)(7> k. (61)
length limit (k—0) the interface is essentially sharp. Now
the viscous damping process occurring in outer region domithe real part ofy,, gives a small correction to the imaginary
nates. The transition between these two regimes takes plaggt ofw, . Insertingw, in Eq. (61) we notice that the damp-

whenw =, , which gives, ing coefficienty,, increases wittk ask™.
ayz K | ~12 B. Strong damping approximation (| wq|<vk?)
1
kCZZp_K ( _W) —1}, (60) In this casel/k~1—iw,/2vk?. From Eq.(36) we now
! obtain two solutions for the dispersion relatian, =0 and
w,=—iw}2vk?=—iakl4y. However, for w,=0, v=0,

where we have used dimensional quantitigr 8CB the and a finite static distortion of the interface does not satisfy
experimental values are[32]: K=10 ®dyn, «=1.5 balance of forces.
x 10 2 erg/cnt, y;=7=0.1 P, andp=1 g/cn?). Using The crossover between these twginees takes place at
these values we obtain the critical wave number |wg|=vk?, which gives
=3750 cm'! and the corresponding critical wavelength
=17 um. For viscous dampingk<k., and for the order a

. Ky =—, (62
parameter relaxatiork>Kk. . 2012

The numerical solution of Eq59) is presented in Fig. 1.

There is a continuous transition between the viscous damgyhere k, ~0.75 cmm* for 8CB. For weak dampingk
ing and order parameter relaxation regimes. To define th%k* , and for strong dampind>Kk, .
width of the crossover region between the two regimes, we Thys, the transition in Fig. 1 takes place between a strong
use the difference between numerical and asymptotic profilegamping rgime (for which — Imw,, grows linearly withk)
ones. These are p|0tted in F|g 2. The W|dth Of the interfaceand a pure Order parameter re|axatiégim_ Th|s exp'ains

defined as usual as width at half helght, takes the valke the linear character of the Corresponding ViSCO[@ime
=7480 Crﬁl. curve.

We now analyze the viscous damping regime in more
detail. A numerical study of the solution of E@6) in a wide
k range shows thab (k) is a unique function ok for all k.
Moreover, in the low- and high- viscosity limits, this solution  In this paper we have examined surface modes at the
assumes the asymptotic forms given below. nematic-isotropic interface using the HOG generalized dy-

V. CONCLUSIONS
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namical Landau-de Gennes the?3,24]. We have assumed field would be to locate the interface and as a consequence a
an isothermal system characterized by a scalar order parardisplacement of the interface would cost energy; the Gold-
eter, both phases having the same density and viscosity, rgtone soft mode with the eigenfunctiohg, then becomes
spectively. Input parameters include the viscosjtythe ro-  hard.
tational viscosity y;, a dimensionless coupling constant
between orientational order and flawwhich is the analog
of the ratio between the rotational viscosities and a micro-
scopic length scalee associated with order parameter V.P.N. thanks the Faculty of Mathematical Studies of Uni-
changes. versity of Southampton and Ecole Normale Superieure de
As we have already observed, this model does not appeayon for scientific hospitality. T.J.S. thanks the Franceso
at first sight to include orientational degrees of freedom.Severi National Institute for Advanced Mathematics for sup-
Nevertheless, it represents an important idealization of th@orting his visit to the Dipartimento di Matematica ed Appli-
liquid crystal problem, a conserved density is coupled to a&azioni at the University of Milano-Bicocca, where this
nonconserved order parameter whose statics is driving thetudy was started, and thanks E. Virga for sponsoring this
phase transition. visit.
We have considered the equilibrium planar nematic-
isotropic interface as the base state of the system. The front APPENDIX: THE BOUNDARY CONDITIONS
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was then perturbed with a small-amplitude monochromatic AT THE SHARP INTERFACE
plane wave and the linear stability of the front was examined
to obtain the general dispersion relati¢&8). The numerical (i) The continuity of the stress tensor in the vertical direc-

study of Eq.(58) in a widek range shows that for arkyonly  tion gives

one solution exists and this solution assumes asymptotic

forms corresponding to viscous dampinig—¢0) and order , 9%

parameter relaxationk(— ) processes. We have defined a 0277 0z7= 0, (AL)

crossover point between these two regimes occurring at X

=K., wherek, is given by Eq.(60). Furthermore, for 8CB, , ) )

we have estimated the magnitudekgf as well as the size of Whereéo,,=—p+2ndw/Jz ando,,=—p'+2now'/Jz are

the crossover region, and also the crossokerbetween correspondlng stresses for t_he nematic and isotropic phases

weak and strong damping order parameter relaxation redt the mterfgce, and=|yv/w is the instantaneous displace-

gimes. ment of an mterfa_ce point Wlt_h horizontal coordm:xt&_om
We have developed a formalism which successfully linksthe mean interfacial plane, wiifs)=0. The pressure is ex-

both the short wavelength limit, for which the interface is Pressed a®=—pgs—pdyldt, p'=—pgs—pdy’'/ot and

essentially diffuse and order parameter relaxation is the imthe !nterfamal pressured’s/9x? is due to the interfacial

portant process, and the long wavelength limit, for which thel€nsiona.

interface is essentially sharp and viscous damping is impor- (i) The continuity of stress tensor components involving

tant. In future studies we shall use this method to examinghe horizontal direction giveso,,=oy,, Wwhere o,,

cases in which:(i) the difference in density between the = n(du/dz+dwldx) and oy,= n(du’ldz+ow’/9x) are the

phases is included, in which case gravity-driven capillarycorresponding components for the nematic and isotropic lig-

waves dominate the long-wave surface spectiiimnthe heat uid, respectively.

equation which explicitly takes account of latent heat pro- (iii) The continuity of vertical and horizontal velocity

duction at interface is consideredii) a full orientational gives, w=w’ and u=u’. Using the velocity expressions

order parameter is included, afig) the NI interface inter- (28)—(31), these conditions lead to the dispersion relation

acts with a neighboring hard wall. The essential effect of theg36).
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